Integrodifference equations in the presence of climate change: persistence criterion, travelling waves and inside dynamics.

نویسندگان

  • Mark A Lewis
  • Nathan G Marculis
  • Zhongwei Shen
چکیده

To understand the effects that the climate change has on the evolution of species as well as the genetic consequences, we analyze an integrodifference equation (IDE) models for a reproducing and dispersing population in a spatio-temporal heterogeneous environment described by a shifting climate envelope. Our analysis on the IDE focuses on the persistence criterion, travelling wave solutions, and the inside dynamics. First, the persistence criterion, characterizing the global dynamics of the IDE, is established in terms of the basic reproduction number. In the case of persistence, a unique travelling wave is found to govern the global dynamics. The effects of the size and the shifting speed of the climate envelope on the basic reproduction number, and hence, on the persistence criterion, are also investigated. In particular, the critical domain size and the critical shifting speed are found in certain cases. Numerical simulations are performed to complement the theoretical results. In the case of persistence, we separate the travelling wave and general solutions into spatially distinct neutral fractions to study the inside dynamics. It is shown that each neutral genetic fraction rearranges itself spatially so as to asymptotically achieve the profile of the travelling wave. To measure the genetic diversity of the population density we calculate the Shannon diversity index and related indices, and use these to illustrate how diversity changes with underlying parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reaction-diffusion Equations for Population Dynamics with Forced Speed I - the Case of the Whole Space

This paper is concerned with time-dependent reaction-diffusion equations of the following type: ∂tu = △u+ f(x− cte, u), t > 0, x ∈ R N . These kind of equations have been introduced in [1] in the case N = 1 for studying the impact of a climate shift on the dynamics of a biological species. In the present paper, we first extend the results of [1] to arbitrary dimension N and to a greater general...

متن کامل

Climate Change and Integrodifference Equations in a Stochastic Environment.

Climate change impacts population distributions, forcing some species to migrate poleward if they are to survive and keep up with the suitable habitat that is shifting with the temperature isoclines. Previous studies have analysed whether populations have the capacity to keep up with shifting temperature isoclines, and have mathematically determined the combination of growth and dispersal that ...

متن کامل

To Investigate Of Change in Waves Height under the influence of climate change using Artificial neural network and wavelet

Prediction of the waves’ specifications that is one of the key factors effective on transformation ofcoasts, production of renewable energies and design of marine structures, has always been importante.Height of the waves is one of the most important and effective parameters of the wave. Differentfactors are effective in variation of the waves’ height. In this research, variation in waves heigh...

متن کامل

Dynamics of habitat changes as a result of climate change in Zagros Mountains Range (Iran), a case study on Amphibians

Climate change is currently considered a serious threat for many species and recognized as one of the most important factors in the global biodiversity loss. Among animal groups, amphibians are known to be among the most sensitive groups of vertebrates to climate change due to their inability to travel long distances, and mountain habitat species are more exposed to climate change pressures tha...

متن کامل

Spreading Speeds and Traveling Waves for Nonmonotone Integrodifference Equations

The spreading speeds and traveling waves are established for a class of non-monotone discrete-time integrodifference equation models. It is shown that the spreading speed is linearly determinate and coincides with the minimal wave speed of traveling waves.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of mathematical biology

دوره   شماره 

صفحات  -

تاریخ انتشار 2018